If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80m^2-405=0
a = 80; b = 0; c = -405;
Δ = b2-4ac
Δ = 02-4·80·(-405)
Δ = 129600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{129600}=360$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-360}{2*80}=\frac{-360}{160} =-2+1/4 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+360}{2*80}=\frac{360}{160} =2+1/4 $
| h/575=2.3 | | 12x+3=11x-3 | | z4+2z3+6z2+8z+8=0 | | 3x+2×-7=0 | | 7x-7=9x-9 | | 4,8-0,8x=0 | | 20+8(q-11)=-8 | | 12=15x+15x | | √(a^2+36=8) | | 21x+105=189 | | x^2-18^1/2x+56^1/2=0 | | K*X=4+2x^2 | | {x}{6}-3x=-17 | | 4x+(5x-4)=12+2x | | K(x)=4+2x^2 | | (9b-5)-2(4b+1)=-4 | | 4x/1=9 | | 12x+9(x+0.12)=5.28 | | 5+b=7 | | -2(2b+1)+(5b-6)=0 | | -4x(x-2)=12 | | (3x-1)^3=0 | | 7y+35-2×17=2 | | 4x+(5-4x)^0,5=3 | | 4v-16=44 | | 6x-3x=-3 | | 23+1x=45 | | 16x^2-20x+14=0 | | x+3.4x=31.25 | | 5+1x=42 | | x*2x=63 | | x+2^2=63 |